

Registry Operations Curriculum DNS 1

Computers use IP addresses. Why do we need names?

- Easier for people to remember
- Computers may be moved between networks, in which case their IP address will change

Old solution: hosts.txt

 A centrally-maintained file, distributed to all hosts on the Internet

 SPARKY
 128.4.13.9

 UCB-MAILGATE
 4.98.133.7

 FTPHOST
 200.10.194.33

... etc

This feature still exists:

/etc/hosts [Unix]

c:\windows\hosts [Windows]

hosts.txt doesn't scale

- Huge file
- Needs frequent copying to ALL hosts
- Consistency
- Always out-of-date
- Name uniqueness
- Single point of administration

The Domain Name System was born

- DNS is a Distributed Database for holding name to IP address (and other) information
- Distributed:
 - Shares the administration
 - Shares the load
- Robustness and performance through:
 - Replication
 - Caching
- A critical piece of Internet infrastructure

DNS is Hierarchical

Forms a tree structure

DNS is Hierarchical (2)

- Gives globally unique names
- Administered in zones (parts of the tree)
- You can give away ("delegate") control of part of the tree underneath you
- Example:
 - isoc.org on one set of nameservers
 - isocws.isoc.org on a different set
 - t1.isocws.isoc.org on another set

Domain Names are (almost) unlimited

- Max 255 characters total length
- Max 63 characters in each part
 - RFC 1034, RFC 1035
- If a domain name is being used as a host name, you should abide by some restrictions
 - RFC 952 (old!)
 - a-z 0-9 and minus (-) only
 - No underscores (_)

Using the DNS

- A Domain Name (like www.tiscali.co.uk) is the KEY to look up information
- The result is one or more RESOURCE RECORDS (RRs)
- There are different RRs for different types of information
- You can ask for the specific type you want, or ask for "any" RRs associated with the domain name

Commonly seen RRs

- A (address): map hostname to IP address
- PTR (pointer): map IP address to name
- MX (mail exchanger): where to deliver mail for user@domain
- CNAME (canonical name): map alternative hostname to real hostname
- TXT (text): any descriptive text
- NS (name server), SOA (start of authority): used for delegation and management of the DNS itself

Simple example

- Query: www.tiscali.co.uk
- Query type: A
- Result: www.tiscali.co.uk. IN A 212.74.101.10

In this case just a single RR is found, but in general, multiple RRs may be returned

(IN is the "class" for INTERNET use of the DNS)

Possible results

- Positive (one or more RRs found)
- Negative (definitely no RRs match the query)
- Server fail (cannot find the answer)

How do you use an IP address as the key for a DNS query?

- Convert the IP address to dotted-quad
- Reverse the four parts
- Add ".in-addr.arpa." to the end; special domain reserved for this purpose

e.g. to find name for 212.74.101.10

10.101.74.212.in-addr.arpa.

è PTR www.tiscali.co.uk.

Known as a "reverse DNS lookup"
(because we are looking up the name for an IP address, rather than the IP address for a name)

DNS is a Client-Server application

- (Of course it runs across a network)
- Requests and responses are normally sent in UDP packets, port 53
- Occasionally uses TCP, port 53
 - for very large requests, e.g. zone transfer from master to slave

There are three roles involved in DNS

Three roles in DNS

RESOLVER

 Takes request from application, formats it into UDP packet, sends to cache

CACHING NAMESERVER

- Returns the answer if already known
- Otherwise searches for an authoritative server which has the information
- Caches the result for future queries
- Also known as RECURSIVE nameserver

AUTHORITATIVE NAMESERVER

Contains the actual information put into the DNS by the domain owner

Three roles in DNS

- The SAME protocol is used for resolverbcache and cachebauth NS communication
- It is possible to configure a single name server as both caching and authoritative
- But it still performs only one role for each incoming query
- Common but NOT RECOMMENDED to configure in this way (see later)

ROLE 1: THE RESOLVER

- A piece of software which formats a DNS request into a UDP packet, sends it to a cache, and decodes the answer
- Usually a shared library (e.g. libresolv.so under Unix) because so many applications need it
- EVERY host needs a resolver e.g. every Windows workstation has one

How does the resolver find a caching nameserver?

- It has to be explicitly configured (statically, or via DHCP etc)
- Must be configured with the IP ADDRESS of a cache (why not name?)
- Good idea to configure more than one cache, in case the first one fails

How do you choose which cache(s) to configure?

- Must have PERMISSION to use it
 - e.g. cache at your ISP, or your own
- Prefer a nearby cache
 - Minimises round-trip time and packet loss
 - Can reduce traffic on your external link, since often the cache can answer without contacting other servers
- Prefer a reliable cache
 - Perhaps your own?

Resolver can be configured with default domain(s)

- If "foo.bar" fails, then retry query as "foo.bar.mydomain.com"
- Can save typing but adds confusion
- May generate extra unnecessary traffic
- Usually best avoided

Example: Unix resolver configuration

/etc/resolv.conf

search tiscali.co.uk nameserver 212.74.112.66 nameserver 212.74.112.67

That's all you need to configure a resolver

Testing DNS

- Just put "www.yahoo.com" in a web browser?
- Why is this not a good test?

Testing DNS with "dig"

- "dig" is a program which just makes DNS queries and displays the results
- Better than "nslookup", "host" because it shows the raw information in full dig tiscali.co.uk.
 - -- defaults to query type "A"

dig tiscali.co.uk. mx

-- specified query type

dig @212.74.112.66 tiscali.co.uk. mx

-- send to particular cache (overrides /etc/resolv.conf)

The trailing dot

dig tiscali.co.uk.

- Prevents any default domain being appended
- Get into the habit of using it always when testing DNS
 - only on domain names, not IP addresses

```
# dig @81.199.110.100 www.gouv.bj. a
; <<>> DiG 8.3 <<>> @81.199.110.100 www.gouv.bj a
(1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4
 flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADD'L: 3
 QUERY SECTION:
    www.gouv.bj, type = A, class = IN
;; ANSWER SECTION:
www.gouv.bj. 1D IN CNAME waib.gouv.bj.
                             208.164.179.196
waib.gouv.bj. 1D IN A
;; AUTHORITY SECTION:
               1D IN NS
gouv.bj.
                            rip.psg.com.
gouv.bj. 1D IN NS
                            ben02.gouv.bj.
gouv.bj. 1D IN NS
                            nakayo.leland.bj.
gouv.bj.
               1D IN NS
                            ns1.intnet.bj.
:: ADDITIONAL SECTION:
ben02.gouv.bj. 1D IN A
                             208.164.179.193
nakayo.leland.bj. 1d23h59m59s IN A 208.164.176.1
ns1.intnet.bj. 1d23h59m59s IN A 81.91.225.18
;; Total query time: 2084 msec
;; FROM: ns.t1.ws.afnog.org to SERVER: 81.199.110.100
 WHEN: Sun Jun 8 21:18:18 2003
;; MSG SIZE sent: 29 rcvd: 221
```

Interpreting the results: header

STATUS

- NOERROR: 0 or more RRs returned
- NXDOMAIN: non-existent domain
- SERVFAIL: cache could not locate answer

FLAGS

- AA: Authoritative answer (not from cache)
- You can ignore the others
 - QR: Query/Response (1 = Response)
 - RD: Recursion Desired
 - RA: Recursion Available

Interpreting the results

- Answer section (RRs requested)
 - Each record has a Time To Live (TTL)
 - Says how long the cache will keep it
- Authority section
 - Which nameservers are authoritative for this domain
- Additional section
 - More RRs (typically IP addresses for the authoritative nameservers)
- Total query time
- Check which server gave the response!
 - If you make a typing error, the query may go to a default server

Practical Exercise

- Configure Unix resolver
- Issue DNS queries using 'dig'
- Use tcpdump to show queries being sent to cache